<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Action</th>
<th>Use</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>Competitive Receptor Antagonist</td>
<td>Competitive Muscarinic Cholinoceptor Antagonist</td>
<td>P&T Lecture 3 (Drug Receptor Interactions)</td>
</tr>
<tr>
<td>Hexamethonium</td>
<td>Irreversible Receptor Antagonist</td>
<td>Irreversible Nicotinic Cholinoceptor Antagonist</td>
<td></td>
</tr>
<tr>
<td>Propanolol</td>
<td>Competitive Receptor Antagonist</td>
<td>Competitive Beta Adrenoceptor Antagonist</td>
<td></td>
</tr>
<tr>
<td>Barbiturates</td>
<td>Anti-Convulsive</td>
<td>GABA Receptor Antagonist</td>
<td>P&T Lecture 4 (Mechanism of drug action)</td>
</tr>
<tr>
<td>Pilocarpine (Alkaloid)</td>
<td>Muscarinic Receptor Agonist (Directly Acting Cholinomimetic Drugs)</td>
<td>Partial Agonist for many muscarinic responses (Less effective on GI Smooth Muscle and the heart) Particularly useful in ophthalmology as local treatment for GLAUCOMA Side effects: Blurred Vision, Sweating, GI Disturbance/Pain, Hypotension, Respiratory Distress</td>
<td>P&T Lecture 6 (Cholinomimetics)</td>
</tr>
<tr>
<td>Bethanechol (Choline Esters)</td>
<td>Muscarinic Receptor Agonist (Directly Acting Cholinomimetic Drugs)</td>
<td>Minor modification of acetylcholine produces an M3 AchR Selective Agonist that is resistant to degradation. Orally active, with limited access to the brain (t1/2= 3-4h) Mainly used to assist BLADDER EMPTYING and to enhance GASTRIC MOTILITY. Side Effects: Sweating, Impaired vision, Nausea, Bradycardia, Hypotension, Respiratory Difficulty</td>
<td>P&T Lecture 6 (Cholinomimetics)</td>
</tr>
<tr>
<td>Drug</td>
<td>Classification</td>
<td>Actions</td>
<td>Side Effects</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Physostigmine</td>
<td>Reversible Anticholinesterase
(Indirectly acting Cholinomimetic Drugs)
(Other similar drugs – Neostigmine, Donepezil ‘Aricept’)</td>
<td>Naturally occurring tertiary amine from calabar beans.
Primarily acts at postganglionic parasympathetic synapse.
Non-polar, so can cross the blood brain barrier
t1/2= 30 mins
Used in the treatment of GLAUCOMA (aiding intraocular fluid drainage) and ATROPINE POISONING</td>
<td></td>
</tr>
<tr>
<td>Ecothiopate</td>
<td>Irreversible Anticholinesterase
(Indirectly acting Cholinomimetic Drugs)
(Other similar drugs – Dyflos, Parathion, Sarin)</td>
<td>Potent Inhibitor of acetylcholinesterase
Slow reactivation of enzyme by hydrolysis takes several days.
Used as eye drops in the treatment of GLAUCOMA (with PROLONGED DURATION OF ACTION) since it is an irreversible inhibitor (so these enzymes become permanently inhibited until new ones are made) – so help to increase intraocular fluid drainage
Systemic Side Effects: Sweating, blurred vision, GI Pain, Bradycardia, Hypotension, Respiratory difficulty</td>
<td></td>
</tr>
<tr>
<td>Donepezil & Tacrine</td>
<td>Non-Polar Anticholinesterases
(so can cross Blood-Brain Barrier)</td>
<td>TREATMENT OF ALZHEIMER’S DISEASE
ACh is important for learning and memory.
Potentiation of central cholinergic transmission relieves AD symptoms, but does not affect degeneration.</td>
<td></td>
</tr>
</tbody>
</table>
| Hexamethonium (Previously mentioned) | **Nicotinic Receptor Antagonists**
(acts on sympathetic and parasympathetic ganglion fibres (Nicotinic receptor between pre- and postganglionic fibres) – hence GANGLION BLOCKADE) | Blocks ion channel
Was used as **THE FIRST ANTIHYPERTENSIVE** (no longer clinically used) | P&T Lecture 7 (Cholinoceptor Antagonists) |
|--------------------------------------|---|---|--|
| Trimetaphan | **Nicotinic Receptor Antagonists**
(acts on sympathetic and parasympathetic ganglion fibres (Nicotinic receptor between pre- and postganglionic fibres) – hence GANGLION BLOCKADE) | Used to cause **HYPOTENSION DURING SURGERY** because it is short acting. | Lecture 7 (Cholinoceptor Antagonists) |
| Atropine | **Muscarinic Receptor Antagonist**
(acts mainly on parasympathetic target organs which all have muscarinic receptors, and sweat glands in sympathetic nervous system) | Causes **MILD RESTLESSNESS**, agitation | Lecture 7 (Cholinoceptor Antagonists) |
| Hyoscine | **Muscarinic Receptor Antagonist**
(acts mainly on parasympathetic target organs which all have muscarinic receptors, and sweat glands in sympathetic nervous system) | Causes **SEDATION** | Lecture 7 (Cholinoceptor Antagonists) |
| Tropicamide | **Muscarinic Receptor Antagonist**
(acts mainly on parasympathetic target organs which all have muscarinic receptors, and sweat glands in sympathetic nervous system) | Examination of the retina – tropicamide is a **MYDRIATIC** | Lecture 7 (Cholinoceptor Antagonists) |

Others – oxybutynin (muscarinic receptor antagonist)
<table>
<thead>
<tr>
<th>Adrenaline/Epinephrine</th>
<th>Directly Acting Sympathomimetics (SNS Agonist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(acts mainly on sympathetic target organs which all have adrenergic receptors)</td>
<td>Selective β1/β2 agonist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Targets (which give rise to the clinical uses):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Blood Vessels</td>
</tr>
<tr>
<td>• Heart</td>
</tr>
<tr>
<td>• Lungs (Trachea and bronchioles)</td>
</tr>
<tr>
<td>• Eyes</td>
</tr>
<tr>
<td>• Release of hypotensive and bronchoconstrictor mediators</td>
</tr>
</tbody>
</table>

Clinical Uses:

- **ALLERGIC REACTION AND ANAPHYLACTIC SHOCK**
 - Hypotensive crisis and breathing difficulties (i.v. and autoinjector delivery systems)

- **COPD (CHRONIC BRONCHITIS, EMPHYSEMA) AND ASTHMA (EMERGENCIES)**
 - Bronchodilator actions
 - Suppression of mediator release

- **ACUTE MANAGEMENT OF HEART BLOCK**
 - Increased peripheral resistance; return of blood to the heart
 - Increased heart rate and force of contraction (CO)
 - (Caution for over-stimulation of heart directly or by reflex tachycardia)

- **SPINAL ANAESTHESIA (I.V.)**
 - To maintain blood pressure

- **PROLONG DURATION OF LOCAL ANAESTHESIA (LOCAL ADMINISTRATION)**
 - Vasoconstrictor properties (α1)
 - Prolongs duration of action, and minimizes dose of local anesthesia required

- **TREATMENT OF GLAUCOMA (EYE-DROPS)**
 - Glaucoma is the second leading cause of blindness worldwide
 - Often caused by raised intra-ocular pressure leading to damage to the optic nerve
 - Adrenaline may decrease aqueous humour production

Lecture 8
(SNS Agonists)
UNWANTED ACTIONS OF ADRENALINE:
- **Secretions** are reduced, and thickened (dry mouth)
- **Minimal effects** on CNS
- **CVS Effects:**
 - Tachycardia, palpitations, arrhythmias
 - Cold Extremities, severe hypertension
 - Overdose – cerebral haemorrhage and pulmonary oedema
- **Gastrointestinal effects:** minimal
- **Skeletal muscle:** tremor

Pharmacokinetics of Noradrenaline/Adrenaline
- Administer i.v., i.m., locally/topically
- Poorly absorbed orally
- Rapid metabolism in the gut, liver and other tissues
- Duration of action: minutes

Metabolism/Breakdown
Adrenaline is taken up by **Uptake 1 and Uptake 2**
Adrenaline is degraded by MAO and COMT → MOPEG/VMA

<table>
<thead>
<tr>
<th>Phenylephrine</th>
<th>Directly Acting Sympathomimetics (SNS Agonist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(acts mainly on sympathetic target organs which all have adrenergic receptors)</td>
<td>α1>>α2>>>β1/β2 (Mainly α1 Agonist)</td>
</tr>
</tbody>
</table>
| 1 | Chemically related to adrenaline
| 2 | More resistant to COMT, but not MAO
| 3 | Clinical usefulness:
| 4 | **VASOCONSTRICCTOR** (i.v. **TOPICALLY** i.e. restricted to an area of the body)
| 5 | **MYDRIATIC** (eye drops)
| 6 | α1 contracts the radial muscle of the eye, causing mydriasis (pupillary dilatation)
| 7 | **NASAL DECONGESTANT**
| 8 | Colds, ‘flu, hayfever – nose drops
| 9 | Oral administration
| 10 | Vasoconstrictor actions (in mucous membranes) |
| | Lecture 8 (SNS Agonists) |
Unwanted Effects:
- Phenylephrine has unwanted effects on the CVS (hypertension)

Clonidine
- **Directly Acting Sympathomimetics (SNS Agonist)**
- N.B. ODD ONE OUT – DECREASES SYMPATHETIC TONE
- (acts mainly on sympathetic target organs which all have adrenergic receptors)
- \(\alpha_2 >> \alpha_1 >> \beta_1/\beta_2\) (SELECTIVE FOR \(\alpha_2\) ADRENOCEPTORS)
- **Reduces Sympathetic Tone** via \(\alpha_2\) adrenoceptor mediated pre-synaptic inhibition of noradrenaline release
- **Central Action in Brainstem** within baroreceptor pathway to REDUCE SYMPATHETIC OUTFLOW
- Clinically useful in:
 - Treatment of hypertension and migraine (oral and i.v. administration)
- Lecture 8 (SNS Agonists)

Isoprenaline
- **Directly Acting Sympathomimetics (SNS Agonist)**
- \(\beta_1 = \beta_2 >> \alpha_1/2\)
- Less susceptible to Uptake 1 and MAO than adrenaline
- Plasma half-life of 2 hours
- Clinical Usefulness:
 - **Treatment of Heart Block**
 - Cardiogenic shock, acute heart failure or myocardial infarction;
 - i.v administration
 - **Previously Used in the Treatment of Asthma**, but now discontinued due to unwanted actions (reflex tachycardia, dysrhythmias)
- Lecture 8 (SNS Agonists)

Dobutamine
- **Directly Acting Sympathomimetics (SNS Agonist)**
- \(\beta_1 >> \beta_2 >> \alpha_1/2\) – SIMILAR TO ISOPRENALINE
- Treats heart block
- **Lacks isoprenaline’s reflex tachycardia**
- **Administer by i.v. infusion**
- Plasma half-life of 2 minutes (rapid metabolism by COMT)
- Lecture 8 (SNS Agonists)
Salbutamol (Ventolin)

Directly Acting Sympathomimetics (SNS Agonist)

$\beta_2 >> \beta_1 >> \alpha_{1/2}$

- Synthetic catecholamine derivative
- Relatively resistant to MAO and COMT

- Clinical usefulness:
 - Treatment of **ASTHMA** (Inhalation, orally)
 - Relaxation of bronchial smooth muscle
 - Inhibition of the release of bronchoconstrictor substances from mast cells
 - Treatment of threatened uncomplicated premature labour (i.v.)

- Unwanted Effects:
 - Reflex Tachycardia
 - Tremor
 - Caution with cardiac patients, hyperthyroidism and diabetes (i.v. use)

- Synthetic catecholamine derivative
- Relatively resistant to MAO and COMT

- Clinical usefulness:
 - Treatment of **ASTHMA** (Inhalation, orally)
 - Relaxation of bronchial smooth muscle
 - Inhibition of the release of bronchoconstrictor substances from mast cells
 - Treatment of threatened uncomplicated premature labour (i.v.)

- Unwanted Effects:
 - Reflex Tachycardia
 - Tremor
 - Caution with cardiac patients, hyperthyroidism and diabetes (i.v. use)
Cocaine

Indirectly Acting Sympathomimetics

Uptake 1 Inhibitor

- **CNS Effects**: Euphoria, excitement, increased motor activity, activation of vomiting centres, CNS depression, respiratory failure and death
- **CVS Effects**: Tachycardia, vasoconstriction, raised blood pressure
- **Other Effects**: Tremors, Convulsions

Clinical Uses:
- Local anaesthetics in ophthalmology (rare)
- Caution: Do not co-administer with adrenaline

Tyramine

Indirectly Acting Sympathomimetics

- **Competitive Uptake 1 Inhibitor**
- **Competitive MAO Inhibitor**

- Tyramine is a dietary amino acid (e.g. cheese, red wine and soy sauce)
- Acts as a ‘false’ neurotransmitter
- Not a problem when normal mechanisms for degradation of monoamines are in operation (i.e. when MAO are fully functional)

Tyramine Actions:
- Acts as a weak agonist at post synaptic adrenoceptors (located on effector cells)
- Competitive **Uptake 1 Inhibitor**: competes with catecholamines for uptake 1
- Competitive **MAO Inhibitor**: Competes with noradrenaline for MAO sites
- Displaces noradrenaline from intracellular vesicles into the cytosol
- Cytoplasmic noradrenaline leaks through the neuronal membrane, to act at postsynaptic adrenoceptors

Under normal conditions, this is not a problem because of:
- Extensive first-pass metabolism
- Short half-life
- Restricted access to the CNS

But, when monoamine oxidases are inhibited, ingestion of foods containing tyramine may cause a HYPERTENSIVE CRISIS – the ‘cheese’ reaction
<table>
<thead>
<tr>
<th>Drug</th>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
</table>
| Phentolamine | Non-Selective $\alpha_1 + \alpha_2$ Antagonist | - Causes **VASODILATION** and a **FALL IN BLOOD PRESSURE** due to a blockade of α_1 receptors
- However, concomitant blockade of α_2 receptors tends to **increase noradrenaline release** (as the synapse inhibitory blockade function is stopped), enhances the **REFLEX TACHYCARDIA** that occurs with any blood pressure lowering agent.
- Increased GIT motility and diarrhoea are common
- No longer clinically used |
| Prazosin | Selective α_1 Antagonist | - **VASODILATION** and a **FALL IN ARTERIAL PRESSURE**
- **Less tachycardia** than non-selective antagonists, since they do not increase NA release from nerve terminals (no α_2-actions)
- **CARDIAC OUTPUT DECREASES**, due to a fall in venous pressure, which in turn is caused by a dilatation of capacitance vessels.
- Hypotensive effect is dramatic.
- Does not affect cardiac function appreciably, although **postural hypotension** is problematic. Unlike other anti-hypertensives, α_1-antagonists causes a **modest decrease in LDL, and an increase in HDL cholesterol**. Starting to become more popular as anti-hypertensive agents. |
| Propanolol | $\beta_1 + \beta_2$ Antagonist | - First major clinical β-Receptor antagonist
- In a subject at rest, propranolol causes **very little change in heart rate, cardiac output or arterial pressure**, but **REDUCES THE EFFECT OF EXERCISE OR STRESS** on these variables
- Being non-selective, propranolol produces all the typical adverse effects. |
| (Anti-Arrhythmics) Non-selective β-antagonist Class II Drug | | - Reduces mortality of patients with MI, particularly successful in arrhythmias during exercise/mental stress |
| **Atenolol** | **Selective β1 Antagonist** | **Historically called cardio-selective drugs.**
β1-Selective so mainly antagonises the effect of noradrenaline on the heart, but will also affect any tissue with β1-receptors.
Less effect on airways than non-selective drugs, but still not safe with asthmatic patients. | Lecture 9 (SNS Antagonists) |
| --- | --- | --- |
| **Labetalol** | **Non-Selective α1+β1 Antagonist**
But more selective towards β1 than α1 | **Dual acting β1 and α1 antagonists** but more action on β1 (but higher ratio of β1:α1 4:1)
This drug lowers blood pressure by a reduction in peripheral resistance.
No long-term change in heart rate or cardiac output. | Lecture 9 (SNS Antagonists) |
| **Methyldopa** | **False Transmitter**
(Acts on adrenergic α-receptors) | **ANTIHYPERTENSIVE AGENT**
Has two key effects:
- **Less active than norepinephrine on α1-receptors,** and so **less effective in causing vasoconstriction.**
- **More active on presynaptic α2-receptors** (auto-inhibitory feedback mechanism) so reduces the transmitter release below normal levels.
Renal blood flow is well maintained, widely used in hypertensive patients with renal insufficiency, or cerebrovascular disease.
Recommended in **hypertensive pregnant women,** as it has **no adverse effects on the foetus** despite crossing blood-placenta barrier.
Adverse effects – dry mouth, sedation, orthostatic hypotension, male sexual dysfunction.
Therefore Methyldopa is RARELY USED due to these actions. | Lecture 9 (SNS Antagonists) |

False Transmitter
(Acts on adrenergic α-receptors)
Taken up by noradrenergic neurones, Decarboxylated and hydroxylated to form a false transmitter: α-methyl-norepinephrine
However, NOT DEAMINATED within the neurone by MAO, and accumulates in larger quantities than norepinephrine, and displaces norepinephrine from synaptic vesicles.
<table>
<thead>
<tr>
<th>Carteolol Hydrochloride</th>
<th>Non Selective Blockage of β1+β2 Receptors</th>
<th>TREATMENT OF GLAUCOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levobunolol Hydrochloride</td>
<td></td>
<td>Reduces the rate of aqueous humour formation by blocking the receptors on the ciliary body – possibly blocking the effects of circulating adrenaline.</td>
</tr>
<tr>
<td>Timolol Maleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaxolol Hydrochloride</td>
<td>Selective Blockage of β1 Receptors</td>
<td>β1 antagonists such as betaxolol hydrochloride are also shown to be effective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other uses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anxiety States – to control somatic symptoms associated with sympathetic over-reactivity, such as palpitations and tremor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Migraine prophylaxis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Benign Essential tremor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubocurarine</th>
<th>Neuromuscular Blocking Drug (Acts on the somatic nervous system – NMJ)</th>
<th>Naturally occurring 4° Ammonium Compound (alkaloid) found in South American Plant (Arrow Poison) Range of synthetic drugs now available.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NON-DEPOLARISING (COMPETITIVE) nACHR ANTAGONIST</td>
<td>Method of Action: Competitive nAChR Antagonist (70-80% block necessary) Graded block: Different proportions of fibres are blocked</td>
</tr>
<tr>
<td></td>
<td>Uses: Relaxation of skeletal muscle during surgical operations (= less anaesthetic)</td>
<td>Effects: Tubocurarine causes FLACCID PARALYSIS in the following order:</td>
</tr>
</tbody>
</table>
| | **Permits artificial ventilation** | • Extrinsic eye muscles → double vision
• Small muscles of face, limbs and pharynx
• Respiratory muscles |
<p>| | | Recovery occurs in the opposite direction to paralysis Note: |</p>
<table>
<thead>
<tr>
<th>Atracurium</th>
<th>Neuromuscular Blocking Drug (Acts on the somatic nervous system – NMJ)</th>
<th>Lecture 10 (Neuromuscular Blocking Drugs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NON-DEPOLARISING (COMPETITIVE) nACHR ANTAGONIST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actions of non-depolarising blockers can be reversed by anticholinesterases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neostigmine (+ Atropine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharmacokinetics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Route of administration – i.v.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does NOT CROSS BBB or placenta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Onset of action 2-3 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duration of paralysis: 40-60min (long)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not metabolised</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excretion: 70% Urine, 30% Bile (Care required if renal or hepatic function is impaired)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unwanted Effects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ganglion Block, Histamine Release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HYPOTENSION:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Ganglion blockade leads to a decrease in Total Peripheral Resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Histamine release from mast cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TACHYCARDIA (May cause arrhythmias)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Reflex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Blockade of Vagal Ganglia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BRONCHOSPASM – caused by histamine release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EXCESSIVE SECRETIONS (Bronchial and salivary) – caused by histamine release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• APNOEA (ALWAYS assist respiration)</td>
<td></td>
</tr>
<tr>
<td>Suxamethonium</td>
<td>Neuromuscular Blocking Drug (Acts on the somatic nervous system – NMJ)</td>
<td>DEPOLARISING nAChR AGONIST</td>
</tr>
</tbody>
</table>