Drugs / Medication List

Endocrinology (Autumn Term)

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Use</th>
<th>Action</th>
<th>Notes (Pharmacokinetics, Unwanted Effects)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocortisone</td>
<td>Treats lack of ACTH</td>
<td>Hormone Replacement Therapy</td>
<td>• Check serum cortisol levels</td>
<td>Endocrinology Lecture 1 — See page 3 for more detailed drug info</td>
</tr>
<tr>
<td>Thyrroxine</td>
<td>Treats lack of TSH</td>
<td>Hormone Replacement Therapy</td>
<td>• Check T3/T4 and TSH levels</td>
<td></td>
</tr>
<tr>
<td>Ethinyloestradiol / Medroxyprogesterone</td>
<td>Treats lack of LH/FSH – Females</td>
<td>Hormone Replacement Therapy</td>
<td>• Check oestrogen and libido</td>
<td></td>
</tr>
<tr>
<td>Testosterone Undecanoate</td>
<td>Treats lack of LH/FSH – Males</td>
<td>Hormone Replacement Therapy</td>
<td>• Check libido</td>
<td></td>
</tr>
<tr>
<td>GH</td>
<td>Treats lack of GH</td>
<td>Hormone Replacement Therapy</td>
<td>• Check IGF and growth charts</td>
<td></td>
</tr>
<tr>
<td>Octreotide</td>
<td>Acromegaly</td>
<td>Somatostatin Analogue</td>
<td>• Reduces the size of the tumour.</td>
<td>Endocrinology Lecture 2</td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>Acromegaly / Hyperprolactinaemia</td>
<td>Dopamine (DA₂) Agonist</td>
<td>• Dopamine agonist so decreases prolactin and GH secretion (negative feedback) so reduces tumour size.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Uses:</td>
<td></td>
<td>• Administered by mouth 1/day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Suppression of Lactation</td>
<td></td>
<td>• Highly plasma bound (93%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cyclical Benign Breast Tumours (Cyclic Breast Pain)</td>
<td></td>
<td>• Hepatic Metabolism – T₁/₂=7 hours (approx)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Parkinson’s Disease</td>
<td></td>
<td>• Unwanted Effects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Nausea / Vomiting / Abdominal Cramps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Psychomotor Excitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Dyskinesias (diminished voluntary movements)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Postural Hypotension</td>
<td></td>
</tr>
</tbody>
</table>
Cabergoline
- Hyperprolactinaemia
- Dopamine (DA₂ and Moderate DA₁) Agonist
- **Oral administration, 1-2 Times a week**
- **T₁/₂= 40 Hours**
- **Unwanted Effects:**
 - As bromocriptine but less pronounced:
 - Nausea / Vomiting / Abdominal Cramps
 - Psychomotor Excitation
 - Dyskinesias (diminished voluntary movements)
 - Postural Hypotension
 - Vasospasm in fingers and toes (Caution: Reynaud’s Disease)

Desmopressin (DDAVP)
- Cranial Diabetes Insipidus
- Night-time Enuresis
- Haemophilia
- Vasopressin V₂ Agonist
- **It produces a prompt sustained decrease in urine volume and an increase in urine osmolarity.**
- **Administration can be either oral or nasal.**
- **Distribution: Desmopressin is retained in the extracellular fluids.**
- **Hepatic / Renal metabolism.**
- **T₁/₂ = 5 hours (approx).**
- **Unwanted Effects:**
 - Fluid retention and hyponatraemia
 - Abdominal pain
 - Headaches
 - Nausea

Terlipressin
- Oesophageal Varices
- V₁ Receptor Agonist
- **Potent Vasoconstrictor**

Felypressin
- Used to prolong the actions of local anaesthetics
- V₁ Receptor Agonist
- **Potent Vasoconstrictor**

Thiazides (e.g. Bendroflumethiazide)
- Nephrogenic Diabetes Insipidus
- Increased water reabsorption (see notes)
- **Mechanism unclear, but believed to work by:**
 - Inhibition of the Na⁺/Cl⁻ transport system in the distal convoluted tubule (diuretic effect)
 - Results in volume depletion
 - Compensatory increase in Na⁺ reabsorption from the proximal tubule
convoluted tubule (and small decrease in GFR) as conc. gradient increases.
• Increased proximal convoluted tubule water reabsorption
• Decreased fluid reaches the collecting duct.
• Reduced urine volume.

The beneficial effects of thiazides in nephrogenic DI are enhanced by a reduction in dietary Na+ intake.

| Lithium | Syndrome of Inappropriate ADH (SIADH) | Affects post-receptor events in the collecting ducts (nephrons) thus preventing effective water reabsorption | Can cause diabetes insipidus.
It is ideal in treating SIADH (where there is an unnecessary release of ADH and increased reabsorption of water), in which the post-receptor events ADH | Endocrinology Lecture 3 |
| --- | --- | --- | --- | --- |
| Dimethyl-Chlor-Tetracycline (DMCT) (Demeclocycline) | Syndrome of Inappropriate ADH (SIADH) | Affects post-receptor events in the collecting ducts (nephrons) thus preventing effective water reabsorption | Can cause diabetes insipidus.
It is ideal in treating SIADH (where there is an unnecessary release of ADH and increased reabsorption of water), in which the post-receptor events ADH | Endocrinology Lecture 3 |
| CONIVAPTAN VAPTANS (Non-peptide vasopressin analogues) | Congestive Heart Disease and other conditions | V₁ / V₂ Receptor Antagonist | These drugs are currently undergoing clinical trials. | Endocrinology Lecture 3 |
| Levothyroxine Sodium T₄ (Thyroxine Sodium) | Hormone Replacement Therapy (Primary Hypothyroidism) | Replaces deficient Tetraiodothyronine (T₄) – Usually the drug of choice | T₄ can be considered a prohormone (since it needs to be converted to T₃ for metabolism)
Both drugs are active orally, although Liothyronine Sodium can be given intravenously in myxoedema coma.
T₄ plasma half-life is 6 days, with a peak effect of 9 days. Half-life for decline of response is 11-15 days.
T₃ plasma half-life is 2-5 days, with a peak effect in 1-2 days. Half-life for decline of response is 8 days
Hence both accumulate if given daily.
They are almost 100% bound to plasma proteins – mainly thyroxine binding globulin (TBG).
Some T₄ is converted to T₃ in tissues. | Endocrinology Lecture 4/5 |
| Liothyronine Sodium T₃ | | Replaces deficient Triiodothyronine (T₃) – Used for more rapid action, such as during myxoedema coma (rare) - intravenous | | |
Further metabolism occurs in the liver (de-iodination, deamination and conjugation).

- Free and conjugated hormone is secreted in the bile and urine:
 - T_3 is cleared in a few hours
 - T_4 is cleared in about 6 days

Unwanted Effects:
- Signs and symptoms of hyperthyroidism
 - High BMR, Increased temperature, Sweating, Sensitivity to heat, Nervousness, Increased appetite
- Consequences of enhanced activity in the sympathetic NS
 - Tremor, Risk of precipitating angina pectoris, cardiac dysrhythmias or cardiac failure

Specific Clinical Uses:
- Daily treatment of hyperthyroid conditions:
 - Mainly diffuse toxic goitre / Graves' Disease / Exophthalmic Goitre
 - IgG against component of follicle cell membrane (possibly TSH receptor) – stimulates T_3/T_4 secretion
 - [cf benign neoplasm, toxic nodular goitre, Plummer's disease is usually treated surgically if necessary]
 - Treatment prior to surgery
 - Reduction of symptoms while waiting for radioiodine to act.

 Treatment regime may involve propranolol → rapidly reduces tremor and tachycardia

Pharmacokinetics:
- The drug is orally active.
- Carbimazole is a prodrug, it has to first be converted to methimazole.
- Plasma $T_{1/2} = 6$-15 hours
- The drug can cross placenta, and is secreted in the milk.
- The drug can be metabolised in the liver and is secreted in the urine.

Unwanted Effects:
- Agranulocytosis, granulocytopenia (reduction in / absence of granular leukocytes) – rare and reversible on withdrawal of drug.
- Rashes (relatively common)
| Potassium Iodide (KI) | Hyperthyroid Conditions | Inhibition of thyroid hormone secretion by:
Inhibits iodination of thyroglobulin
Inhibits H_2O_2 generation (thyroperoxidase) | • Doses of at least 30 times the average daily requirement of iodide are required.
• Uses:
 o Preparation of hyperthyroid patients for surgery
 o Severe thyrotoxic crisis (thyroid storm)
• Main Actions include:
 o Inhibition of thyroid hormone secretion
 o Hyperthyroid symptoms reduce within 1-2 days
 o Vascularity and size of gland reduces in 10-14 days
• Unwanted Effects:
 o Allergic reactions (e.g. rashes, fever, angio-oedema)
• Pharmacokinetics:
 o Given orally
 o Maximum effects after 10 days continuous administration | Endocrinology Lecture 4/5 |
|----------------------|-------------------------|---------------------------------|--|---------------------------------|
| Radio-Iodine (131I) | Hyperthyroid Conditions
Papillary and follicular thyroid carcinoma | Cytotoxicity of thyroid tissue | • Treats hyperthyroidism and thyroid tumours.
• Mode of action:
 o Isotope is processed in the same way as stable iodide, and becomes incorporated into thyroglobulin and therefore concentrates in the colloid region.
 o Isotope emits β-particles (very short range) with cytotoxic effects limited to follicular cells.
• Administer as a single oral dose (370-555 MBq)
• Radioactive half life is around 8 days.
• Radioactivity is negligible after 2 months, maximum effects of about 2-3 months.
• Avoid in children and pregnant patients.
• Low doses of 131I (or Technecium 99 pertechnetate) tests thyroid function (when administered intravenously), with negligible cytotoxicity. | Endocrinology Lecture 4/5 |
NB: Oxytocics (e.g. oxytocin, ergometrine and prostaglandins) increase motility.

Abortifacients (e.g. prostaglandins and progesterone antagonists) are used in abortion.

Tocolytics (e.g. β-adrenoceptor agonists) are used

| Oxytocin (Oxytocics – increase motility) | Clinical Uses:
1. Induction of labour at term (controlled i.v. infusion)
2. Prevention treatment of post-partum haemorrhage (slow i.v. injection/infusion, Local pressor action in uterus suppresses bleeding)
3. Facilitation of milk let-down (intranasal spray) | Increase Motility
In Uterus:
• Rhythmic contraction (Fundus → Cervix)
 Requires local PG production
• Dilation of cervix
• Suppressed by progesterone, enhanced by oestrogen
• Most marked in late stages of pregnancy
In mammary glands:
• Contraction of myoepithelial cells
• Milk Ejection
CVD (Pharmacological)
• Transient vasodilation and tachycardia
• Constriction of umbilical arteries and veins
Renal (Pharmacological)
• Anti-Diuresis and secondary hyponatraemia (i.e. VP like) | Targets for Oxytocin:
• Therapeutic advantage (Major) in uterus and mammary gland (myoepithelial cells)
• Unwanted Effects (Minor) in cardiovascular system and kidneys
• Additional physiological effects in CNS.
Clinical Uses:
• Induction of Labour at term
 ○ Controlled i.v. infusion
• Prevention treatment of post-partum haemorrhage
 ○ Slow i.v. injection/infusion
 ○ Local pressor action in uterus suppresses bleeding
• Facilitation of milk let-down
 ○ Intranasal Spray
Pharmacokinetics
• Administration
 ○ i.v. infusion/slow injection
 ○ Intranasal Spray
• Distribution
 ○ Extracellular Fluid
• Metabolism
 ○ Liver, Kidney, Plasma (Placenta-derived enzyme)
 ○ T\(_1/2\) is short (about 5 minutes)
Unwanted Effects (Oxytocin overdose)
• Compromised placental exchange of O\(_2\) / nutrients leading to foetal distress
• Foetus forced against an undilated cervix leading to lacerations / trauma
• Uterine rupture | Endocrinology Lecture 6 |
| **CNS (Physiological)** | **Ergometrine** (Oxytocics – increase motility)
(Physiological)
• Maternal/paternal behaviour
• Social Recognition
• Bonding
• Trust
• Transient (but serious) hypotension with reflex tachycardia
• Water intoxication of mother and foetus
CNS effects – trust, paternal/maternal bonding etc.
Clinical Uses:
• Routine management of 3rd stage of labour, i.m. +/- oxytocin
• High Risk postpartum haemorrhage, i.v. after delivery of the shoulders
• Post-partum atony of the uterus - oral
Myometrium:
• Increases tone
• Prolonged series of contractions
Blood Vessels:
• Constriction of umbilical and placental vessels
Ergot derived from fungus Clariceps Purpurea
Contra-Indications:
• Pregnancy prior to 3rd stage of labour
• Pre-eclampsia and other vascular diseases
Pharmacokinetics:
• Administration
 o i.v., i.m. or oral
• Distribution
 o Well Distributed
• Metabolism
 o Hepatic
 o Duration 3-4 hours
Unwanted Effects:
• Abdominal Pain
• Hypertension
• Anginal Pain
• Nausea/Vomiting
Endocrinology Lecture 6 |
| **Prostaglandins** | Dinoprostone (PGE2 Vasodilator)
Gemeprost (PGE1 Derivative)
Clinical Uses:
• Induction of abortion – dinoprostone – intravaginally as a gel or tablet
• Induction of cervical ripening (at term: dinoprostone, prior to abortion: gemeprost vaginal pressaries)
Prostaglandins:
• Stimulate contractions **throughout** pregnancy
• Induce cervical ripening – i.e. softening of the tissue
Unwanted Effects:
• Potentiation of actions of oxytocin
• Nausea, vomiting and diarrhoea
• Hypertension (PGF2α), Hypotension (PGE2)
• Pyrexia (fever)
Endocrinology Lecture 6 |
| **Carboprost** (15methyl PGF2α – Vasoconstrictor) | • Post-partum haemorrhage in those resistant to oxytocin and ergometrine (carboprost, i.m.) | | |
| (Oxytocics – Increase motility) | Prostaglandins are also abortifacients (induce abortion) | | |

| **Progesterone Receptor Blockers** (e.g. Mifepristone) | Clinical Uses:
- Early therapeutic abortion (<63 days)
- Softening and dilation of cervix prior to suction abortion
- Therapeutic abortion (13-20 weeks) with gemeprost | Competitive antagonist of progesterone at the progesterone receptor with weak agonist activity | Mechanism of early therapeutic abortion:
- Blockade of uterine progesterone receptors
- Detachment of blastocyst
- Reduced hCG production
- Reduced progesterone production by ovarian corpus luteum
- Causing:
 - Accenuated decidual breakdown
 - Increased uterine prostaglandin production
| **Abortifacients** (induce abortion) | | | Endocrinology Lecture 6 |

| **Tocolytics** (reduce motility)
- β-adrenoceptor agonists | Receptor activation increases intracellular cAMP
This causes relaxation of the uterine muscle | | | Endocrinology Lecture 6 |
| **Dexamethasone** | **Low Dose Dexamethasone Suppression Tests - Confirming Cushing’s Syndrome** | **Dexamethasone is a steroid hormone which affects the Hypothalamo - Adenohypophysial - Adrenal Axis** | **Low Dose:**
Give 0.5mg Dexamethasone every 6h for 48h
In normal patients: Cortisol levels fall to 0 (suppressed)
In Cushing’s patients: 680 (any cause of Cushing’s will fail to suppress) | **Endocrinology Lecture 7** |
|----------------|---|---|---|---|
| **High Dose Dexamethasone Suppression Tests – Differentiating Cushing’s Disease from other causes** | It causes negative feedback inhibition of ACTH release by the adenohypophysis (similar to Cortisol) | **High Dose:**
Give 2.0mg Dexamethasone every 6h for 48h
In pituitary Cushing’s, cortisol levels fall from ~680 to ~235nM
In other causes (e.g. Ectopic ACTH or adrenal tumouts), still high ~680. | | |
| **Metyrapone** | Treats Cushing’s Syndrome (Reduces production of Cortisol)
Enzyme Inhibitor | **Inhibits the 11β-Hydroxylase Enzyme which converts:**
11deoxycortisol \rightarrow cortisol
11deoxycorticosterone \rightarrow corticosterone | **Key Effects of Metyrapone:**
- Cortisol Synthesis blocked
- ACTH secretion increased
- Plasma deoxycortisol increased

NB: 11-deoxycortisol has no negative feedback effect on pituitary / hypothalamus so ACTH levels climb.
Uses:
- To treat some cases of Cushing’s Syndrome:
 - E.g. bronchial tumours that are inaccessible to surgery
 - Doses (oral) may be tailored to corticosteroid production.
 - Corticosteroid replacement therapy may be required with high doses (as corticosterone production is also stopped in addition to cortisol)
- Control of Cushing’s symptoms prior to surgery.
Unwanted Actions:
- Nausea, vomiting and dizziness
- Sedation, hypoadrenalism
 Caution: against impaired performance of skilled tasks (e.g. driving, operating heaving machinery)
- Hypertension on long term administration
 As deoxycorticosterone accumulates in the zona glomerulosa, it has aldosterone like effects (increased salt retention and hypertension) | **Endocrinology Lecture 7** |
| **Trilostane** | Treats Cushing’s Syndrome (Reduces production of Cortisol) | Inhibits 3β-Hydroxysteroid dehydrogenase (3β-HSD)

 Pregnenalone → Progesterone
 17α-Hydroxypregnenalone → 17α-Hydroxyprogesterone | Key Effects of Trilostane:
 o Blocks synthesis of: Aldosterone, corticosterone, cortisol and androstenedione (testosterone/17β-Oestradiol)
 o Blocks glucocorticoids, mineralocorticoids and sex steroid production.
 Uses:
 • Cushing’s Syndrome
 • Primary Hyperaldosteronism
 o Not easy to tailor dose to corticosteroid production.
 Monitor circulating corticosteroids and plasma electrolytes and replace with glucocorticoids and mineralocorticoids when necessary.
 • Reduction of sex steroid hormone production
 o E.g. post menopausal breast cancer which has relapsed after initial surgery with anti-oestrogens.
 Unwanted Actions:
 o Nausea, vomiting, diarrhoea, flushing | Endocrinology Lecture 7 |
|---|---|---|---|---|
| **Ketoconazole** | Treats Cushing’s Syndrome (Reduces production of Cortisol) | Blockage of Cytochrome P450 | Key Effects of Ketoconazole:
 o Blocks synthesis of: Aldosterone, corticosterone, cortisol and androstenedione (testosterone/17β-Oestradiol)
 o Blocks glucocorticoids, mineralocorticoids and sex steroid production.
 Uses (Similar to Metyrapone):
 • Cushing’s Syndrome
 • Treatment and control of symptoms prior to surgery
 • Orally Active
 Unwanted Actions:
 o Nausea, vomiting, abdominal pain
 o Alopecia
 o Gynecomastia
 o Oligospermia
 o Ventricular Tachycardias
 o (Possibly fatal) Liver Damage (monitor liver function) | Endocrinology Lecture 7 |
| **Aminolutethamide** | Treats Cushing’s Syndrome (Reduces production of Cortisol)
Enzyme Inhibitor | Inhibits conversion of cholesterol into pregnenalone (very toxic) | Key Effects of Aminolutethamide:
- Blocks synthesis of: Aldosterone, corticosterone, cortisol and androstenedione (testosterone/17β-Oestrodol)
- Blocks glucocorticoids, mineralocorticoids and sex steroid production.
Uses:
- Adrenocortical carcinoma (malignant)
- Prostatic cancer (malignant)
- NB – Replace corticosteroids
Pharmacokinetics: Orally Active | Endocrinology Lecture 7 |
| **Spironolactone** | Treats Conn’s Syndrome (Primary Hyperaldosteronism)
Also used for treatment of oedema, congestive heart failure, nephrotic syndrome and cirrhosis of the liver. | Spironolactone is a **prodrug** rapidly metabolised into **canrenone** (competitive antagonist of mineralocorticoid receptor) | Key Effects of Spironolactone:
- Blocks Na+ resorption and K+ excretion in kidney tubules (K+ sparing diuretic)
Pharmacokinetics:
- Orally Active
- Given in single/divided doses daily
- Highly protein bound and metabolised in the liver
Unwanted Actions:
- Menstrual irregularities
- Gynaecomastia (androgen receptor binding)
- GI Tract Irritation
Contraindications:
- Renal/Hepatic Disease | Endocrinology Lecture 7 |
<table>
<thead>
<tr>
<th>Compound</th>
<th>Test for Addison’s Disease</th>
<th>Administration of these drugs can be:</th>
<th>Clinical Uses of Glucocorticoids</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synacthen</td>
<td>Give 250 µg synthetic IM and measure cortisol response.</td>
<td>Oral
Parenteral (I.V. or I.M.)</td>
<td>1. Anti-Inflammatory (Immunosuppressive Therapy)
• Asthma
• Inflammatory conditions of the skin, nasal mucosa, ear, eye, joints
• Autoimmune / Inflammatory disease e.g. rheumatoid arthritis
• Other autoimmune disease e.g. myasthenia gravis
• Prevent rejection following organ/bone marrow transplant.</td>
<td></td>
</tr>
<tr>
<td>synACTHen</td>
<td>Typical Addison’s patient response:
Cortisol at 9AM → 100 (270-900 normal)</td>
<td>Metabolism and Excretion – Hepatic:
• Reduction of A Ring
• Other modifications
• Conjugation
• Excretion via Bile and Urine</td>
<td>2. Neoplastic Disease
• In combination with cytotoxic drugs in specific</td>
<td></td>
</tr>
<tr>
<td>Synthetic ACTH</td>
<td>Administration of IM synacthen (injection):
Cortisol at 9.30AM → 150 (>600 normal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>1. Anti-Inflammatory (Immunosuppressive Therapy)
2. Neoplastic Disease
3. Pregnancy</td>
<td></td>
<td></td>
<td>Lecture 9 + 10</td>
</tr>
<tr>
<td>(Cortisol)</td>
<td>Glucocorticoid with mineralocorticoid activity at high doses.
Distribution: 90-95% Bound to Plasma Protein (CBG)
Duration/Excretion: t₁/₂=1h, Duration=8h</td>
<td>Administration of these drugs can be:
• Oral
• Parenteral (I.V. or I.M.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisolone</td>
<td>Glucocorticoid with weak mineralocorticoid activity.
Distribution: Binds to CBG
Duration: 12h</td>
<td>Metabolism and Excretion – Hepatic:
• Reduction of A Ring
• Other modifications
• Conjugation
• Excretion via Bile and Urine</td>
<td></td>
<td>Lecture 9 + 10</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Synthetic glucocorticoid with no mineralocorticoid activity.
Distribution: Binds weakly to albumin
Duration: 36h</td>
<td>Clinical Uses of Glucocorticoids
1. Anti-Inflammatory (Immunosuppressive Therapy)
• Asthma
• Inflammatory conditions of the skin, nasal mucosa, ear, eye, joints
• Autoimmune / Inflammatory disease e.g. rheumatoid arthritis
• Other autoimmune disease e.g. myasthenia gravis
• Prevent rejection following organ/bone marrow transplant.</td>
<td></td>
<td>Lecture 9 + 10</td>
</tr>
</tbody>
</table>
malignancies e.g. acute lymphocytic leukaemia
 • To reduce cerebral oedema in patients with brain tumours
 • As a component of anti-emetic treatment with chemotherapy
 • To elevate mood in terminally ill patients.

3. Pregnancy
 • Mature foetal lungs before preterm birth.

Prolonged Glucocorticoid use in excess can lead to Iatrogenic Cushing’s Syndrome

<table>
<thead>
<tr>
<th>Fludrocortisone</th>
<th>Used as an aldosterone substitute</th>
<th>Aldosterone Analogue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Distribution: Binds weakly to albumin only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If less is administered, more bioavailability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross placenta, and also secreted in milk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fludrocortisone is used instead of aldosterone, as aldosterone is not as clinically effective when given orally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administration – Oral</td>
</tr>
</tbody>
</table>

Endocrinology Lecture 10
| **17β-Oestriol (and its esters)** | Well absorbed, but undergo extensive first pass metabolism, so usually given **i.m. in oil vehicle**. This:
- Delays absorption
- Maintains plasma levels over extended periods
- Prolongs duration of action
Conjugation is mainly as sulphates, and is excreted in the bile and urine.
Types:
- **Oestriol** – *a naturally, orally active oestrogen*
- **Oestrone Sulphate** – ‘Conjugated’ oestrogen (*natural and Premarin*)
 - Orally active, hydrolysed to (more active) oestrogen in peripheral tissue.
- **EthinyI Oestriol** – *A semi-synthetic oestrogen. An oestriol with an ethinyl group at C17.*
 - Resistant to metabolism and orally active. So the **drug of choice.**
- **Transdermal Skin Patches**
 - Oestrogens readily cross membranes
 - This route avoids first pass metabolism
Bioavailability:
- 70% of circulating oestrogens are bound to plasma proteins – sex steroid hormone binding globulin and albumin.
Physiological Actions:
- **Increase negative and positive feedback** (LH Surge and ovulation)
- **Increase smooth muscle contractility** (Uterus and fallopian tubes) | **Endocrinology Lecture 11** |
<table>
<thead>
<tr>
<th>Effects</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cervical secretions – Decreased viscosity</td>
<td>(favours penetration of sperm)</td>
</tr>
<tr>
<td>• Stimulates endometrial proliferation and glandular secretions.</td>
<td></td>
</tr>
<tr>
<td>Unwanted Effects:</td>
<td></td>
</tr>
<tr>
<td>• Blood clotting factors Increase</td>
<td></td>
</tr>
<tr>
<td>o Increased incidence of thromboembolic disease</td>
<td>(chronic usage at high doses)</td>
</tr>
<tr>
<td>• Endometrium Proliferation</td>
<td></td>
</tr>
<tr>
<td>o Increased risk of endometrial cancer</td>
<td></td>
</tr>
<tr>
<td>o Reduce by co-administration of progestogens</td>
<td></td>
</tr>
<tr>
<td>• On the breast</td>
<td></td>
</tr>
<tr>
<td>o Breast discomfort</td>
<td></td>
</tr>
<tr>
<td>o Increased risk of breast cancer (controversial)</td>
<td></td>
</tr>
<tr>
<td>• Increase salt and water retention in the kidneys</td>
<td>Can cause oedema and accentuate oedema due to other causes (e.g. cardiac failure, kidney disease)</td>
</tr>
<tr>
<td>o Can cause oedema and accentuate oedema due to other causes (e.g. cardiac failure, kidney disease)</td>
<td></td>
</tr>
<tr>
<td>o Contributes to hypertension and weight gain</td>
<td></td>
</tr>
<tr>
<td>• Chemoreceptor trigger zone and vomiting centre of the brain</td>
<td></td>
</tr>
<tr>
<td>o Nausea</td>
<td></td>
</tr>
<tr>
<td>• Headaches</td>
<td></td>
</tr>
<tr>
<td>• Increased weight due to fat deposition</td>
<td></td>
</tr>
</tbody>
</table>
| Progestogens (Two types) | Progesterone (natural progestogen) and its analogues e.g. medroxyprogesterone acetate | • Poorly absorbed
• Rapidly metabolised in the liver
• Give I.M. in oily vehicle (depot preparation)

Physiological actions of progesterone:
1. **Changes in mucosal secretions in fallopian tubes** (important for the nourishment of the fertilized ovum)
2. **Thickens cervical mucus** (Hostile to sperm)
3. **Decreases myometrial contractility** (Favours implantation and embryo development)
4. **Stimulates mammary tissue development (primed by oestrogen)** (Prepares breasts for lactation)

 (In breast, stimulates development of lobules and alveoli in mammary tissue prepared by oestrogens)

Progesterone only contraceptives:
• May be used when oestrogen-only contraceptives are contraindicated:
 o CVS Problems
 o History of Thrombosis
 o Prior to major surgery
 o During lactation
• Administer:
 o Orally
 o I.M. depot preparation (e.g. Depot-Provera-Medroxyprogesterone for long acting contraception use) | Endocrinology Lecture 11 |
| **Testosterone Analogues**
e.g. norethisterone | • Orally active
• Metabolised to other biologically active steroids e.g. testosterone, oestrogen

Bind to SHBG and Albumin in the circulation |
|---|---|
| Combined Oral Contraceptives
(Orally active oestrogen e.g. ethinyl oestriodiol + Progesterone e.g. norethisterone) | Efficacy at minimal drug concentrations to suppress fertility

• **Feedback actions of progesterone in hypothalamus and pituitary** → suppresses menstrual cycling
• **Progesterone thickens cervical mucus** → provides environment inhospitable to sperm
• **Oestrogen upregulates progesterone receptors** → enhances sensitivity to progesterone
• **Oestrogen counteracts the androgenic effects of synthetic progesterone** → prevents masculanisation
• **Oestrogen also contributes to negative feedback at hypothalamus and pituitary** → synergises with progesterone |
| ‘Emergency’ Contraception
(Post-Coital-Pill / Morning After Pill) | • Combined oestrogen and progesterone (prescription only) or progesterone only (over the counter)
• Emergency contraception has doses higher than that used for COC’s

Administration:
• 2 Doses 12 hours apart
• Beginning ASAP and within 72 hours of intercourse
• Single, double-dose tablet also available over the counter (Levonorgestrel ‘Levonelle’)
• May cause nausea & vomiting:
 o Repeat the dose if necessary, may require co-administration with an anti-emetic. |
<table>
<thead>
<tr>
<th>Effectiveness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prevents 75-85% of pregnancies that might otherwise occur after unprotected intercourse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If unsuccessful, there are no harmful effects to the woman, the course of her pregnancy or her foetus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ineffective in terminating an established pregnancy – do not use with a known/suspected pregnancy.</td>
</tr>
</tbody>
</table>

Use progesterone only when there is a history of stroke, blood clots or migraine.
Calcium Salts e.g. Calcium Chloride, Calcium Gluconate

Uses:
1. **Osteoporosis**
 - From (postmenopausal oestrogen deficiency, age related deficiency in bone homeostasis, raised glucocorticoid levels)
2. **Hypocalcaemias**
 - Dietary deficiency of calcium, malabsorption of Ca2+, hypoparathyroidism, hypocalcaemic tetany (i.v.)
3. **Cardiac Dysrhythmias**
 - caused by severe hypokalaemia (i.v.)

Pharmacokinetics – Calcium Chloride
- Administer i.v. Slow Infusion
- Can cause peripheral vasodilation, cutaneous burning sensation and a moderate fall in blood pressure.
- **DO NOT USE ORALLY** – as it is a gastric irritant, and do not inject any Ca2+ salt directly into tissues (e.g. IM) as it can cause tissue necrosis.

Pharmacokinetics – Calcium Gluconate
- Orally active – does not cause gastric irritation
- Administer i.v. for severe hypocalcaemic tetany

Bisphosphonates / Diphosphonates (analogues of pyrophosphate)
- e.g. sodium etidronate, alendronate

Uses:
1. **Treating Paget’s Disease**
2. **Management of hypercalcemia**
 - associated with malignancies
3. **Cancer**
 - treatment to delay bone metastases
4. **Osteoporosis induced by high pharmacological**

Inhibits recruitment, and promotes apoptosis of osteoclast cells (favouring bone resorption)

i.e. reduced bone turnover

Indirectly stimulates osteoblast activity (cells which lay down bone matrix)

Pharmacokinetics:
- Orally active but poorly absorbed (take on an empty stomach – food especially milk decreases drug absorption)
- Accumulates at the site of bone mineralisation and remains part of the bone until resorbed (months, years)
- Excreted in the urine **unmetabolised**.

Unwanted Actions:
- Increase in non-mineral osteoid may predispose to fractures.
- Gastric Pains/GI Upsets
- Oesophagitis
- Bone Pain

Endocrinology Lecture 14
<table>
<thead>
<tr>
<th>Oestrogen Receptor (ER) Ligands</th>
<th>Prevention of postmenopausal osteoporosis</th>
<th>Inhibits Osteoclast recruitment</th>
<th>Unwanted Actions of ER Ligands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oestrogens e.g. ethinyl estradiol (ER Agonist)</td>
<td></td>
<td>Opposes PTH</td>
<td>• Increased risk of endometrial cancer (aim for selective bone SERM)</td>
</tr>
<tr>
<td>2. Tissue selective ER antagonist/antiestrogen e.g. Tamoxigen</td>
<td></td>
<td></td>
<td>• (Controversial) increase in risk for breast cancer</td>
</tr>
<tr>
<td>(antagonises ER’s in breast, but has ER activity in bone)</td>
<td></td>
<td></td>
<td>• Minor GI problems</td>
</tr>
<tr>
<td>3. Tissue selective ER agonists e.g. Raloxifen</td>
<td></td>
<td></td>
<td>• Small increase in risk of venous thromboembolism and pulmonary embolism</td>
</tr>
<tr>
<td>(further selectivity on bone)</td>
<td></td>
<td></td>
<td>Endocrinology Lecture 14</td>
</tr>
</tbody>
</table>
| Calcitonin | 1) Paget’s Disease *(Relieves bone pain and neurological complications)*
2) Osteoporosis *(Postmenopausal & glucocorticoid induced)*
3) In treating Hypercalcaemias *(Primary Hyperparathyroidism – diseases of PTH excess)*
 (Vitamin D Intoxification/excess, Neoplasias, malignancies, osteolytic bone metastases) | Released by thyroid gland parafollicular cells → calcitonin **decreases** plasma calcium by:
1. Inhibiting Osteoclasts
2. Inhibiting kidney a-hydroxylase | Pharmacokinetics:
- Synthetic salmon and human calcitonin are available for clinical use.
- Route of administration:
 - s.c./i.m. injection (Paget’s Disease)
 - Intranasally (Postmenopausal osteoporosis)
- Resistance due to AB formation may develop after a few months.
Unwanted Actions:
- Inflammatory reaction at site of injection
- Nausea / Vomiting
- Facial Flushing
- Tingling sensation in hands
- Unpleasant taste in mouth |
Vitamin D
(Fat soluble vitamin)

| **Physiological role in maintaining plasma calcium and regulating cell growth.** | **Ergocalciferol:**
- Prevents osteomalacia (defects in bone mineralisation due to Vitamin D deficiency) and rickets (juvenile form of Vitamin D deficiency) and disorders of Vitamin D absorption.
- To treat hypercalcaemias associated with hyperparathyroidism (preferable to PTH treatment → expensive, parenteral, more side effects)

Uses – Treatment of diseases associated with hypocalcaemias.

Calcitriol:
- To treat osteodystrophy arising as a result of decreased calcitriol production due to chronic renal failure.

Actions/mechanisms:

1. Calcitriol binds to its intracellular receptors which belong to the superfamily of nuclear receptors.

2. In the *small intestine*: *Enhances Transcription* of a Ca2+ transporter protein – intestinal absorption of Ca2+ phosphate are increased.

3. In the kidney it increases reabsorption of Ca2+ and phosphate.

4. In the bone – promotes healthy mineralization, growth and remodelling.

5. Role in cell growth and differentiation in many tissues especially the bone and marrow.

Misc:
- Nicotine – *increases* vasopressin secretion
- Alcohol and Glucocorticoids – *decrease* vasopressin secretion
- Chlorpropamide – is a cause for causing Syndrome of Inappropriate ADH (SIADH)